Integral Representation with Adapted Continuous Integrand with Respect to Fractional Brownian Motion
نویسندگان
چکیده
منابع مشابه
The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6
Let B be a fractional Brownian motion with Hurst parameter H = 1/6. It is known that the symmetric Stratonovich-style Riemann sums for ∫ g(B(s)) dB(s) do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of càdlàg functions. Moreover, we show that the resulting stochastic integral satisfies a change of variable formula with a correcti...
متن کاملStochastic calculus with respect to fractional Brownian motion
— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...
متن کاملStochastic integration with respect to the fractional Brownian motion
We develop a stochastic calculus for the fractional Brownian motion with Hurst parameter H > 2 using the techniques of the Malliavin calclulus. We establish estimates in Lp, maximal inequalities and a continuity criterion for the stochastic integral. Finally, we derive an Itô’s formula for integral processes.
متن کاملConvergence to fractional Brownian motion and to the Telecom process: the integral representation approach
It has become common practice to use heavy-tailed distributions in order to describe the variations in time and space of network traffic workloads. The asymptotic behavior of these workloads is complex; different limit processes emerge depending on the specifics of the work arrival structure and the nature of the asymptotic scaling. We focus on two variants of the infinite source Poisson model ...
متن کاملArbitrage with Fractional Brownian Motion
Fractional Brownian motion has been suggested as a model for the movement of log share prices which would allow long-range dependence between returns on different days. While this is true, it also allows arbitrage opportunities, which we demonstrate both indirectly and by constructing such an arbitrage. Nonetheless, it is possible by looking at a process similar to the fractional Brownian motio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Analysis and Applications
سال: 2014
ISSN: 0736-2994,1532-9356
DOI: 10.1080/07362994.2014.948725